1,438 research outputs found

    Scaling Identities for Solitons beyond Derrick's Theorem

    Full text link
    New integral identities satisfied by topological solitons in a range of classical field theories are presented. They are derived by considering independent length rescalings in orthogonal directions, or equivalently, from the conservation of the stress tensor. These identities are refinements of Derrick's theorem.Comment: 10 page

    Deconstructing Supersymmetry

    Get PDF
    Two supersymmetric classical mechanical systems are discussed. Concrete realizations are obtained by supposing that the dynamical variables take values in a Grassmann algebra with two generators. The equations of motion are explicitly solved.Comment: 19 pages, Tex fil

    Light Nuclei as Quantized Skyrmions

    Full text link
    We consider the rigid body quantization of Skyrmions with topological charges 1 to 8, as approximated by the rational map ansatz. Novel, general expressions for the elements of the inertia tensors, in terms of the approximating rational map, are presented and are used to determine the kinetic energy contribution to the total energy of the ground and excited states of the quantized Skyrmions. Our results are compared to the experimentally determined energy levels of the corresponding nuclei, and the energies and spins of a few as yet unobserved states are predicted.Comment: 33 pages, 16 figures, Section 13 replace

    Thermodynamics of Vortices in the Plane

    Full text link
    The thermodynamics of vortices in the critically coupled abelian Higgs model, defined on the plane, are investigated by placing NN vortices in a region of the plane with periodic boundary conditions: a torus. It is noted that the moduli space for NN vortices, which is the same as that of NN indistinguishable points on a torus, fibrates into a CPN−1CP_{N-1} bundle over the Jacobi manifold of the torus. The volume of the moduli space is a product of the area of the base of this bundle and the volume of the fibre. These two values are determined by considering two 2-surfaces in the bundle corresponding to a rigid motion of a vortex configuration, and a motion around a fixed centre of mass. The partition function for the vortices is proportional to the volume of the moduli space, and the equation of state for the vortices is P(A−4πN)=NTP(A-4\pi N)=NT in the thermodynamic limit, where PP is the pressure, AA the area of the region of the plane occupied by the vortices, and TT the temperature. There is no phase transition.Comment: 17 pages, DAMTP 93-3

    The interaction energy of well-separated Skyrme solitons

    Get PDF
    We prove that the asymptotic field of a Skyrme soliton of any degree has a non-trivial multipole expansion. It follows that every Skyrme soliton has a well-defined leading multipole moment. We derive an expression for the linear interaction energy of well-separated Skyrme solitons in terms of their leading multipole moments. This expression can always be made negative by suitable rotations of one of the Skyrme solitons in space and iso-space.We show that the linear interaction energy dominates for large separation if the orders of the Skyrme solitons' multipole moments differ by at most two. In that case there are therefore always attractive forces between the Skyrme solitons.Comment: 27 pages amslate

    Solitons in a Baby-Skyrme model with invariance under area preserving diffeomorphisms

    Full text link
    We study the properties of soliton solutions in an analog of the Skyrme model in 2+1 dimensions whose Lagrangian contains the Skyrme term and the mass term, but no usual kinetic term. The model admits a symmetry under area preserving diffeomorphisms. We solve the dynamical equations of motion analytically for the case of spinning isolated baryon type solitons. We take fully into account the induced deformation of the spinning Skyrmions and the consequent modification of its moment of inertia to give an analytical example of related numerical behaviour found by Piette et al.. We solve the equations of motion also for the case of an infinite, open string, and a closed annular string. In each case, the solitons are of finite extent, so called "compactons", being exactly the vacuum outside a compact region. We end with indications on the scattering of baby-Skyrmions, as well as some considerations as the properties of solitons on a curved space.Comment: 30 pages, 5 figures, revtex, major modifications, conclusions modifie

    Angularly localized Skyrmions

    Full text link
    Quantized Skyrmions with baryon numbers B=1,2B=1,2 and 4 are considered and angularly localized wavefunctions for them are found. By combining a few low angular momentum states, one can construct a quantum state whose spatial density is close to that of the classical Skyrmion, and has the same symmetries. For the B=1 case we find the best localized wavefunction among linear combinations of j=1/2j=1/2 and j=3/2j=3/2 angular momentum states. For B=2, we find that the j=1j=1 ground state has toroidal symmetry and a somewhat reduced localization compared to the classical solution. For B=4, where the classical Skyrmion has cubic symmetry, we construct cubically symmetric quantum states by combining the j=0j=0 ground state with the lowest rotationally excited j=4j=4 state. We use the rational map approximation to compare the classical and quantum baryon densities in the B=2 and B=4 cases.Comment: 22 page

    Reparametrising the Skyrme Model using the Lithium-6 Nucleus

    Get PDF
    The minimal energy B=6 solution of the Skyrme model is a static soliton with D4dD_{4d} symmetry. The symmetries of the solution imply that the quantum numbers of the ground state are the same as those of the Lithium-6 nucleus. This identification is considered further by obtaining expressions for the mean charge radius and quadrupole moment, dependent only on the Skyrme model parameters ee (a dimensionless constant) and FπF_\pi (the pion decay constant). The optimal values of these parameters have often been deliberated upon, and we propose, for B>2B>2, changing them from those which are most commonly accepted. We obtain specific values for these parameters for B=6, by matching with properties of the Lithium-6 nucleus. We find further support for the new values by reconsidering the α\alpha-particle and deuteron as quantized B=4 and B=2 Skyrmions.Comment: 18 page

    Kink dynamics in a novel discrete sine-Gordon system

    Full text link
    A spatially-discrete sine-Gordon system with some novel features is described. There is a topological or Bogomol'nyi lower bound on the energy of a kink, and an explicit static kink which saturates this bound. There is no Peierls potential barrier, and consequently the motion of a kink is simpler, especially at low speeds. At higher speeds, it radiates and slows down.Comment: 10 pages, 7 figures, archivin

    Electrically Charged Sphalerons

    Get PDF
    We investigate the possibility that the Higgs sector of the Weinberg-Salam model admits the existence of electrically charged, sphaleron states. Evidence is provided through an asymptotic and numerical perturbative analysis about the uncharged sphaleron. By introducing a toy model in two dimensions we demonstrate that such electrically charged, unstable states can exist. Crucially, they can have a comparable mass to their uncharged counterparts and so may also play a role in electroweak baryogenesis, by opening up new channels for baryon number violating processes.Comment: 12 pages, 4 Postscript figure
    • …
    corecore